Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 12(6): e15974, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38491822

RESUMEN

Patients undergoing cardiopulmonary bypass procedures require inotropic support to improve hemodynamic function and cardiac output. Current inotropes such as dobutamine, can promote arrhythmias, prompting a demand for improved inotropes with little effect on intracellular Ca2+ flux. Low-dose carbon monoxide (CO) induces inotropic effects in perfused hearts. Using the CO-releasing pro-drug, oCOm-21, we investigated if this inotropic effect results from an increase in myofilament Ca2+ sensitivity. Male Sprague Dawley rat left ventricular cardiomyocytes were permeabilized, and myofilament force was measured as a function of -log [Ca2+ ] (pCa) in the range of 9.0-4.5 under five conditions: vehicle, oCOm-21, the oCOm-21 control BP-21, and levosimendan, (9 cells/group). Ca2+ sensitivity was assessed by the Ca2+ concentration at which 50% of maximal force is produced (pCa50 ). oCOm-21, but not BP-21 significantly increased pCa50 compared to vehicle, respectively (pCa50 5.52 vs. 5.47 vs. 5.44; p < 0.05). No change in myofilament phosphorylation was seen after oCOm-21 treatment. Pretreatment of cardiomyocytes with the heme scavenger hemopexin, abolished the Ca2+ sensitizing effect of oCOm-21. These results support the hypothesis that oCOm-21-derived CO increases myofilament Ca2+ sensitivity through a heme-dependent mechanism but not by phosphorylation. Further analyses will confirm if this Ca2+ sensitizing effect occurs in an intact heart.


Asunto(s)
Monóxido de Carbono , Miofibrillas , Ratas , Animales , Humanos , Masculino , Monóxido de Carbono/farmacología , Contracción Miocárdica , Ratas Sprague-Dawley , Miocitos Cardíacos , Hemo , Calcio
2.
BMC Biol ; 21(1): 287, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066609

RESUMEN

Physical activity and several pharmacological approaches individually combat age-associated conditions and extend healthy longevity in model systems. It is tantalizing to extrapolate that combining geroprotector drugs with exercise could extend healthy longevity beyond any individual treatment. However, the current dogma suggests that taking leading geroprotector drugs on the same day as exercise may limit several health benefits. Here, we review leading candidate geroprotector drugs and their interactions with exercise and highlight salient gaps in knowledge that need to be addressed to identify if geroprotector drugs can have a harmonious relationship with exercise.


Asunto(s)
Longevidad , Senoterapéuticos , Humanos , Ejercicio Físico , Envejecimiento
3.
J Proteome Res ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991985

RESUMEN

Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in "omics" technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offers new insights into the molecular mechanisms underlying sarcopenia for the evaluation and monitoring of a therapeutic treatment of sarcopenia.

4.
bioRxiv ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37577600

RESUMEN

Sarcopenia is a progressive disorder characterized by age-related loss of skeletal muscle mass and function. Although significant progress has been made over the years to identify the molecular determinants of sarcopenia, the precise mechanisms underlying the age-related loss of contractile function remains unclear. Advances in omics technologies, including mass spectrometry-based proteomic and metabolomic analyses, offer great opportunities to better understand sarcopenia. Herein, we performed mass spectrometry-based analyses of the vastus lateralis from young, middle-aged, and older rhesus monkeys to identify molecular signatures of sarcopenia. In our proteomic analysis, we identified numerous proteins that change with age, including those involved in adenosine triphosphate and adenosine monophosphate metabolism as well as fatty acid beta oxidation. In our untargeted metabolomic analysis, we identified multiple metabolites that changed with age largely related to energy metabolism including fatty acid beta oxidation. Pathway analysis of age-responsive proteins and metabolites revealed changes in muscle structure and contraction as well as lipid, carbohydrate, and purine metabolism. Together, this study discovers new metabolic signatures and offer new insights into the molecular mechanism underlying sarcopenia for the evaluation and monitoring of therapeutic treatment of sarcopenia.

5.
Proc Natl Acad Sci U S A ; 120(19): e2222081120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126723

RESUMEN

Single-cell proteomics has emerged as a powerful method to characterize cellular phenotypic heterogeneity and the cell-specific functional networks underlying biological processes. However, significant challenges remain in single-cell proteomics for the analysis of proteoforms arising from genetic mutations, alternative splicing, and post-translational modifications. Herein, we have developed a highly sensitive functionally integrated top-down proteomics method for the comprehensive analysis of proteoforms from single cells. We applied this method to single muscle fibers (SMFs) to resolve their heterogeneous functional and proteomic properties at the single-cell level. Notably, we have detected single-cell heterogeneity in large proteoforms (>200 kDa) from the SMFs. Using SMFs obtained from three functionally distinct muscles, we found fiber-to-fiber heterogeneity among the sarcomeric proteoforms which can be related to the functional heterogeneity. Importantly, we detected multiple isoforms of myosin heavy chain (~223 kDa), a motor protein that drives muscle contraction, with high reproducibility to enable the classification of individual fiber types. This study reveals single muscle cell heterogeneity in large proteoforms and establishes a direct relationship between sarcomeric proteoforms and muscle fiber types, highlighting the potential of top-down proteomics for uncovering the molecular underpinnings of cell-to-cell variation in complex systems.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteómica , Proteómica/métodos , Reproducibilidad de los Resultados , Isoformas de Proteínas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteoma/metabolismo
6.
Sci Rep ; 12(1): 16904, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207382

RESUMEN

Systolic and diastolic dysfunction in diabetes have frequently been associated with abnormal calcium (Ca2+) regulation. However, there is emerging evidence that Ca2+ mishandling alone is insufficient to fully explain diabetic heart dysfunction, with focus shifting to the properties of the myofilament proteins. Our aim was to examine the effects of diabetes on myofilament Ca2+ sensitivity and Ca2+ handling in left ventricular tissues isolated from the same type 2 diabetic rat hearts. We measured the force-pCa relationship in skinned left ventricular cardiomyocytes isolated from 20-week-old type 2 diabetic and non-diabetic rats. Myofilament Ca2+ sensitivity was greater in the diabetic relative to non-diabetic cardiomyocytes, and this corresponded with lower phosphorylation of cardiac troponin I (cTnI) at ser23/24 in the diabetic left ventricular tissues. Protein expression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), phosphorylation of phospholamban (PLB) at Ser16, and SERCA/PLB ratio were lower in the diabetic left ventricular tissues. However, the maximum SERCA Ca2+ uptake rate was not different between the diabetic and non-diabetic myocardium. Our data suggest that impaired contractility in the diabetic heart is not caused by SERCA Ca2+ mishandling. This study highlights the important role of the cardiac myofilament and provides new insight on the pathophysiology of diabetic heart dysfunction.


Asunto(s)
Cardiomiopatías , Diabetes Mellitus Tipo 2 , Animales , Calcio/metabolismo , Calcio de la Dieta/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplásmico/metabolismo , Contracción Miocárdica , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Ratas , Ratas Zucker , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Troponina I/metabolismo
7.
J Appl Physiol (1985) ; 132(6): 1350-1360, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35482324

RESUMEN

The cardiovascular benefits of regular exercise are unequivocal, yet patients with type 2 diabetes respond poorly to exercise due to a reduced cardiac reserve. The contractile response of diabetic cardiomyocytes to ß-adrenergic stimulation is attenuated, which may result in altered myofilament calcium sensitivity and posttranslational modifications of cardiac troponin I (cTnI). Treadmill running increases myofilament calcium sensitivity in nondiabetic rats, and thus we hypothesized that endurance training would increase calcium sensitivity of diabetic cardiomyocytes and alter site-specific phosphorylation of cTnI. Calcium sensitivity, or pCa50, was measured in Zucker diabetic fatty (ZDF), nondiabetic (nDM), and diabetic (DM) rat hearts after 8 wk of either a sedentary (SED) or progressive treadmill running (TR) intervention. Skinned cardiomyocytes were connected to a capacitance-gauge transducer and a torque motor to measure force as a function of pCa (-log[Ca2+]). Specific phospho-sites on cTnI and O-GlcNAcylation were quantified by immunoblot and total protein phosphorylation by fluorescent gel staining (ProQ Diamond). The novel finding in this study was that training increased pCa50 in both DM and nDM cardiomyocytes (P = 0.009). Phosphorylation of cTnI amino acid residues Ser23/24, a crucial protein kinase A site, and Threonine (Thr)144 was lower in DM hearts, but there was no effect of training on site-specific phosphorylation. In addition, total phosphorylation and O-GlcNAcylation levels were not different between SED and TR groups. These findings suggest that regular exercise may benefit the diabetic heart by specifically targeting myofilament contractile function.NEW & NOTEWORTHY We examined the effects of training on the myofilament calcium in diabetic rat hearts. After 8 wk of treadmill running, both nondiabetic and diabetic cardiomyocytes had increased myofilament calcium sensitivity compared with their sedentary counterparts, but there was no effect of training on the phosphorylation or O-GlcNAcylation status of myofilament proteins measured in this study. These data highlight one potential mechanism capable of reversing, in part, reduced cardiac reserve in the diabetic heart.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Carrera , Animales , Calcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Miofibrillas/metabolismo , Fosforilación , Ratas , Ratas Zucker , Troponina I/metabolismo
8.
Elife ; 112022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35297761

RESUMEN

The loss of skeletal muscle function with age, known as sarcopenia, significantly reduces independence and quality of life and can have significant metabolic consequences. Although exercise is effective in treating sarcopenia it is not always a viable option clinically, and currently, there are no pharmacological therapeutic interventions for sarcopenia. Here, we show that chronic treatment with pan-adiponectin receptor agonist AdipoRon improved muscle function in male mice by a mechanism linked to skeletal muscle metabolism and tissue remodeling. In aged mice, 6 weeks of AdipoRon treatment improved skeletal muscle functional measures in vivo and ex vivo. Improvements were linked to changes in fiber type, including an enrichment of oxidative fibers, and an increase in mitochondrial activity. In young mice, 6 weeks of AdipoRon treatment improved contractile force and activated the energy-sensing kinase AMPK and the mitochondrial regulator PGC-1a (peroxisome proliferator-activated receptor gamma coactivator one alpha). In cultured cells, the AdipoRon induced stimulation of AMPK and PGC-1a was associated with increased mitochondrial membrane potential, reorganization of mitochondrial architecture, increased respiration, and increased ATP production. Furthermore, the ability of AdipoRon to stimulate AMPK and PGC1a was conserved in nonhuman primate cultured cells. These data show that AdipoRon is an effective agent for the prevention of sarcopenia in mice and indicate that its effects translate to primates, suggesting it may also be a suitable therapeutic for sarcopenia in clinical application.


Asunto(s)
Adiponectina , Receptores de Adiponectina , Adiponectina/metabolismo , Animales , Masculino , Ratones , Músculo Esquelético/metabolismo , Piperidinas , Primates , Calidad de Vida , Receptores de Adiponectina/metabolismo
9.
Exp Physiol ; 106(11): 2235-2247, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34605091

RESUMEN

NEW FINDINGS: What is the central question of this study? In Zucker Diabetic Fatty rats, does cardiomyocyte myofilament function change through the time course of diabetes and what are the mechanisms behind alterations in calcium sensitivity? What is the main finding and its importance? Zucker Diabetic Fatty rats had increased myofilament calcium sensitivity and reduced phosphorylation at cardiac troponin I without differential O-GlcNAcylation. ABSTRACT: The diabetic heart has impaired systolic and diastolic function independent of other comorbidities. The availability of calcium is altered, but does not fully explain the cardiac dysfunction seen in the diabetic heart. Thus, we explored if myofilament calcium regulation of contraction is altered while also categorizing the levels of phosphorylation and O-GlcNAcylation in the myofilaments. Calcium sensitivity (pCa50 ) was measured in Zucker Diabetic Fatty (ZDF) rat hearts at the initial stage of diabetes (12 weeks old) and after 8 weeks of uncontrolled hyperglycaemia (20 weeks old) and in non-diabetic (nDM) littermates. Skinned cardiomyocytes were connected to a capacitance-gauge transducer and a torque motor to measure force as a function of pCa (-log[Ca2+ ]). Fluorescent gel stain (ProQ Diamond) was used to measure total protein phosphorylation. Specific phospho-sites on cardiac troponin I (cTnI) and total cTnI O-GlcNAcylation were quantified using immunoblot. pCa50 was greater in both 12- and 20-week-old diabetic (DM) rats compared to nDM littermates (P = 0.0001). Total cTnI and cTnI serine 23/24 phosphorylation were lower in DM rats (P = 0.003 and P = 0.01, respectively), but cTnI O-GlcNAc protein expression was not different. pCa50 is greater in DM rats and corresponds with an overall reduction in cTnI phosphorylation. These findings indicate that myofilament calcium sensitivity is increased and cTnI phosphorylation is reduced in ZDF DM rats and suggests an important role for cTnI phosphorylation in the DM heart.


Asunto(s)
Diabetes Mellitus , Miofibrillas , Animales , Calcio/metabolismo , Diabetes Mellitus/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Fosforilación/fisiología , Ratas , Ratas Zucker , Troponina I/metabolismo
10.
Physiol Rep ; 8(5): e14391, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32170841

RESUMEN

Cancer cachexia is the loss of lean muscle mass with or without loss of fat mass that is often highlighted by a progressive loss of skeletal muscle mass and function. The mechanisms behind the cachexia-related loss of skeletal muscle are poorly understood, including cachexia-related muscle functional impairments. Existing models have revealed some potential mechanisms, but appear limited to how the cancer develops and the type of tumors that form. We studied the C57BL6/J (B6) ApcMin/+ Tg::Fabp1-Cre TG::PIK3ca* (CANCER) mouse. In this model, mice develop highly aggressive intestinal cancers. We tested whether CANCER mice develop cancer cachexia, if muscle function is altered and if sex differences are present. Both female and male mice, B6 (CONTROL) and CANCER mice, were analyzed to determine body weight, hindlimb muscle mass, protein concentration, specific force, and fatigability. Female CANCER mice had reduced body weight and hindlimb muscle mass compared with female CONTROL mice, but lacked changes in protein concentration and specific force. Male CANCER mice had reduced protein concentration and reduced specific force, but lacked altered body weight and muscle mass. There were no changes in fatigability in either group. Our study demonstrates that CANCER mice present an early stage of cachexia, have reduced specific force in male CANCER mice and develop a sex-dependent cachexia phenotype. However, CANCER mice lack certain aspects of the syndrome seen in the human scenario and, therefore, using the CANCER mice as a preclinical model does not seem sufficient in order to maximize the translation of preclinical findings to humans.


Asunto(s)
Caquexia/patología , Neoplasias Colorrectales/patología , Músculo Esquelético/patología , Animales , Caquexia/complicaciones , Caquexia/fisiopatología , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/fisiopatología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/fisiopatología , Caracteres Sexuales
11.
J Proteome Res ; 19(1): 446-454, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31647247

RESUMEN

Heterogeneity in skeletal muscle contraction time, peak power output, and resistance to fatigue, among others, is necessary to accommodate the wide range of functional demands imposed on the body. Underlying this functional heterogeneity are a myriad of differences in the myofilament protein isoform expression and post-translational modifications; yet, characterizing this heterogeneity remains challenging. Herein, we have utilized top-down liquid chromatography (LC)-mass spectrometry (MS)-based proteomics to characterize myofilament proteoform heterogeneity in seven rat skeletal muscle tissues including vastus lateralis, vastus medialis, vastus intermedius, rectus femoris, soleus, gastrocnemius, and plantaris. Top-down proteomics revealed that myofilament proteoforms varied greatly across the seven different rat skeletal muscle tissues. Subsequently, we quantified and characterized myofilament proteoforms using online LC-MS. We have comprehensively characterized the fast and slow skeletal troponin I isoforms, which demonstrates the ability of top-down MS to decipher isoforms with high sequence homology. Taken together, we have shown that top-down proteomics can be used as a robust and high-throughput method to characterize the molecular heterogeneity of myofilament proteoforms from various skeletal muscle tissues.


Asunto(s)
Proteínas Musculares/análisis , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Animales , Cromatografía Liquida/métodos , Electroforesis en Gel de Poliacrilamida , Masculino , Proteómica/métodos , Ratas Endogámicas F344 , Espectrometría de Masas en Tándem , Troponina T/análisis , Troponina T/metabolismo
12.
J Am Soc Mass Spectrom ; 30(12): 2460-2469, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30834509

RESUMEN

Sarcomeric proteins, including myofilament and Z-disk proteins, play critical roles in regulating muscle contractile properties. A variety of isoforms and post-translational modifications (PTMs) of sarcomeric proteins have been shown to be associated with modulation of muscle functions and the occurrence of muscle diseases. Non-human primates (NHPs) are excellent research models for sarcopenia, a disease associated with alterations in sarcomeric proteins, due to their marked similarities to humans. However, the sarcomeric proteins in NHP skeletal muscle have not been well characterized. To gain a deeper understanding of sarcomeric proteins in NHP skeletal muscle, we employed top-down mass spectrometry (MS) to conduct a comprehensive analysis on isoforms and PTMs of sarcomeric proteins in rhesus macaque skeletal muscle. We identified 23 protein isoforms with 46 proteoforms of sarcomeric proteins, including 6 isoforms with 18 proteoforms from fast skeletal troponin T. Particularly, for the first time, a novel PDZ/LIM domain protein isoform, PDLIM7, was characterized with a newly identified protein sequence. Moreover, we also identified multiple PTMs on these proteins, including deamidation, methylation, acetylation, tri-methylation, phosphorylation, and S-glutathionylation. Most PTM sites were localized, including Asn13 deamidation on MLC-2S; His73 methylation on αactin; N-terminal acetylation on most identified proteins; N-terminal tri-methylation on MLC-1S, MLC-1F, MLC-2S, and MLC-2F; Ser14 phosphorylation on MLC-2S; and Ser15 and Ser16 phosphorylation on MLC-2F. In summary, a comprehensive characterization of sarcomeric proteins including multiple isoforms and PTMs in NHP skeletal muscle was achieved by analyzing intact proteins in the top-down MS approach.


Asunto(s)
Proteínas Musculares/análisis , Músculo Esquelético/química , Sarcómeros/química , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Macaca mulatta , Dominios PDZ , Isoformas de Proteínas/análisis , Procesamiento Proteico-Postraduccional
13.
Mol Cell Proteomics ; 18(3): 594-605, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30591534

RESUMEN

Determining changes in protein expression and post-translational modifications (PTMs) is crucial for elucidating cellular signal transduction and disease mechanisms. Conventional antibody-based approaches have inherent problems such as the limited availability of high-quality antibodies and batch-to-batch variation. Top-down mass spectrometry (MS)-based proteomics has emerged as the most powerful method for characterization and quantification of protein modifications. Nevertheless, robust methods to simultaneously determine changes in protein expression and PTMs remain lacking. Herein, we have developed a straightforward and robust top-down liquid chromatography (LC)/MS-based targeted proteomics platform for simultaneous quantification of protein expression and PTMs with high throughput and high reproducibility. We employed this method to analyze the sarcomeric subproteome from various muscle types of different species, which successfully revealed skeletal muscle heterogeneity and cardiac developmental changes in sarcomeric protein isoform expression and PTMs. As demonstrated, this targeted top-down proteomics platform offers an excellent 'antibody-independent' alternative for the accurate quantification of sarcomeric protein expression and PTMs concurrently in complex mixtures, which is generally applicable to different species and various tissue types.


Asunto(s)
Corazón/crecimiento & desarrollo , Músculo Esquelético/crecimiento & desarrollo , Proteómica/métodos , Sarcómeros/metabolismo , Animales , Cromatografía Liquida , Regulación del Desarrollo de la Expresión Génica , Masculino , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Procesamiento Proteico-Postraduccional , Ratas , Ovinos , Espectrometría de Masas en Tándem
14.
Front Physiol ; 9: 326, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651255

RESUMEN

Premature birth affects more than 10% of live births, and is characterized by relative hyperoxia exposure in an immature host. Long-term consequences of preterm birth include decreased aerobic capacity, decreased muscular strength and endurance, and increased prevalence of metabolic diseases such as type 2 diabetes mellitus. Postnatal hyperoxia exposure in rodents is a well-established model of chronic lung disease of prematurity, and also recapitulates the pulmonary vascular, cardiovascular, and renal phenotype of premature birth. The objective of this study was to evaluate whether postnatal hyperoxia exposure in rats could recapitulate the skeletal and metabolic phenotype of premature birth, and to characterize the subcellular metabolic changes associated with postnatal hyperoxia exposure, with a secondary aim to evaluate sex differences in this model. Compared to control rats, male rats exposed to 14 days of postnatal hyperoxia then aged to 1 year demonstrated higher skeletal muscle fatigability, lower muscle mitochondrial oxidative capacity, more mitochondrial damage, and higher glycolytic enzyme expression. These differences were not present in female rats with the same postnatal hyperoxia exposure. This study demonstrates detrimental mitochondrial and muscular outcomes in the adult male rat exposed to postnatal hyperoxia. Given that young adults born premature also demonstrate skeletal muscle dysfunction, future studies are merited to determine whether this dysfunction as well as reduced aerobic capacity is due to reduced mitochondrial oxidative capacity and metabolic dysfunction.

15.
Mol Cell Proteomics ; 17(1): 134-145, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046390

RESUMEN

Sarcopenia, the age-related loss of skeletal muscle mass and strength, is a significant cause of morbidity in the elderly and is a major burden on health care systems. Unfortunately, the underlying molecular mechanisms in sarcopenia remain poorly understood. Herein, we utilized top-down proteomics to elucidate sarcopenia-related changes in the fast- and slow-twitch skeletal muscles of aging rats with a focus on the sarcomeric proteome, which includes both myofilament and Z-disc proteins-the proteins that constitute the contractile apparatuses. Top-down quantitative proteomics identified significant changes in the post-translational modifications (PTMs) of critical myofilament proteins in the fast-twitch skeletal muscles of aging rats, in accordance with the vulnerability of fast-twitch muscles to sarcopenia. Surprisingly, age-related alterations in the phosphorylation of Cypher isoforms, proteins that localize to the Z-discs in striated muscles, were also noted in the fast-twitch skeletal muscle of aging rats. This represents the first report of changes in the phosphorylation of Z-disc proteins in skeletal muscle during aging. In addition, increased glutathionylation of slow skeletal troponin I, a novel modification that may help protect against oxidative damage, was observed in slow-twitch skeletal muscles. Furthermore, we have identified and characterized novel muscle type-specific proteoforms of myofilament proteins and Z-disc proteins, including a novel isoform of the Z-disc protein Enigma. The finding that the phosphorylation of Z-disc proteins is altered in response to aging in the fast-twitch skeletal muscles of aging rats opens new avenues for the investigation of the role of Z-discs in age-related muscle dysfunction.


Asunto(s)
Músculo Esquelético/metabolismo , Sarcómeros/metabolismo , Sarcopenia/metabolismo , Envejecimiento/metabolismo , Animales , Masculino , Procesamiento Proteico-Postraduccional , Proteómica , Ratas
16.
Front Physiol ; 7: 352, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27601998

RESUMEN

Aging is associated with a decline in cardiac function. Exercise intervention has been suggested as a way to improve this decrement. Age-related decline in cardiac function is associated with decreases in fatty acid oxidation, mitochondrial function, and AMP-activated protein kinase (AMPK) activity. The molecular mechanisms involved with age-related changes in mitochondrial function and substrate metabolism are poorly understood. We determined gene expression differences in hearts of Young (6 mo), Old (33 mo), and old exercise trained (Old + EXE) (34 mo) FBN rats, using Qiagen PCR arrays for Glucose, Fatty acid, and Mitochondrial metabolism. Old rats demonstrated decreased (p < 0.05) expression for key genes in fatty acid oxidation, mitochondrial function, and AMPK signaling. There were no differences in the expression of genes involved in glucose metabolism with age. These gene expression changes occurred prior to altered protein translation as we found no differences in the protein content of peroxisome proliferator activated receptor gamma, coactivators 1 alpha (PGC-1α), peroxisome proliferator activated receptor alpha (PPARα), and AMPKα2 between young and old hearts. Four months of exercise training did not attenuate the decline in the gene expression in aged hearts. Despite this lack of change in gene expression, exercise-trained rats demonstrated increased exercise capacity compared to their sedentary counterparts. Taken together, our results show that differential expression of genes associated with fatty acid metabolism, AMPK signaling and mitochondrial function decrease in the aging heart which may play a role in age-related declines in fatty acid oxidation, AMPK activity, and mitochondrial function in the heart.

17.
J Proteome Res ; 15(8): 2706-16, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27362462

RESUMEN

Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia.


Asunto(s)
Cadenas Ligeras de Miosina/metabolismo , Proteómica/métodos , Envejecimiento , Animales , Contracción Muscular , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/fisiopatología , Fosforilación , Ratas , Sarcopenia/etiología , Espectrometría de Masas en Tándem
18.
J Gerontol A Biol Sci Med Sci ; 67(11): 1178-87, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22843668

RESUMEN

Aging is characterized by a progressive decline in cardiac function, but endurance exercise training has been shown to retard a number of deleterious effects of aging. However, underlying mechanisms by which exercise training improves age-related decrements in myocardial contractile function are not well understood. The purpose of this study was to determine the effects of exercise training on power output properties in permeablized (skinned) myocytes of old rats. Thirty-month-old rats were divided into sedentary control (C) and groups undergoing 11 weeks of treadmill exercise training at moderate intensity (MI) and at high intensity (HI). Peak power output normalized to maximal force was significantly increased in MI but not in HI compared to C with significant increases in atrial myosin light chain 1 in ventricle. These results suggest that MI exercise training is beneficial as a significant increase was seen in the ability of the myocardium to do work, but this effect was not seen with HI training.


Asunto(s)
Envejecimiento/fisiología , Tolerancia al Ejercicio/fisiología , Contracción Miocárdica/fisiología , Cadenas Ligeras de Miosina/metabolismo , Condicionamiento Físico Animal , Análisis de Varianza , Animales , Células Cultivadas , Electroforesis en Gel Bidimensional , Prueba de Esfuerzo , Masculino , Modelos Animales , Células Musculares/citología , Células Musculares/metabolismo , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley
19.
J Gerontol A Biol Sci Med Sci ; 66(12): 1267-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21896503

RESUMEN

Aging is generally associated with a decline in several indices of cardiac function. The cellular mechanisms for this decline are not completely understood. The ability of the myocardium to perform external work (power output) is a critical aspect of ventricular function. The purpose of this study was to determine the effect of aging on loaded shortening and power output properties. We measured force-velocity properties in permeabilized (skinned) myocytes from the hearts of 9-, 24-, and 33-month-old male Fisher 344 × Brown Norway F1 hybrid rats (F344BN) during loaded contractions using a force-clamp technique. Power output was calculated by multiplying force and shortening velocity values. We found that peak power output normalized to maximal force was significantly decreased by 18% and 31% in myocytes from 24- and 33-month-old group, respectively, compared with 9-month group (p < .05). These results suggest that aging is associated with a significant decrease in the ability of the myocardium to do work.


Asunto(s)
Envejecimiento/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Animales , Fenómenos Biomecánicos , Masculino , Cadenas Pesadas de Miosina/metabolismo , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344
20.
Comp Biochem Physiol B Biochem Mol Biol ; 144(3): 271-82, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16707270

RESUMEN

Prolonged selective breeding of mice (Mus musculus) for high levels of voluntary wheel running has favoured an unusual phenotype ("mini muscles"), apparently caused by a single Mendelian recessive allele, in which most hind-limb muscles are markedly reduced in mass, but have increased mass-specific activities of mitochondrial enzymes. We examined whether these changes reflect changes in fibre size, number or ultrastructure in normal and "mini-muscle" mice within the two (of four) selectively bred lines (lab designations L3 and L6) that exhibit the phenotype at generations 26 and 27. In both lines, the gastrocnemius and plantaris muscles are smaller in mass (by >50% and 20%, respectively) in affected individuals. The mass-specific activities of mitochondrial enzymes in the gastrocnemius and plantaris muscles were increased in the mini phenotype in both lines, with stronger effects in the gastrocnemius muscle. In the gastrocnemius, the % myosin heavy chain (MHC) IIb was reduced by 50% in L3 and by 30% in L6, whereas the % MHC IIa and I were higher, particularly in L3. Fibre number in the plantaris muscle did not significantly differ between mini and normal muscles, although muscle mass was a significant positive correlate of fibre number. Small fibres were more abundant in mini than normal muscles in L3. Mitochondrial volume density was significantly higher in mini than normal muscle fibres in L3, but not in L6. Microscopy revealed a surprising attribute of the mini muscles: an abundance of small, minimally differentiated, myofibril-containing cells positioned in a disorderly fashion, particularly in the surface layer. We hypothesise that these unusual cells may be satellite cells or type IIb fibres that did not complete their differentiation. Together, these observations suggest that mice with the mini phenotype have reduced numbers of type IIb fibres in many of their hind-limb muscles, leading to a decrease in mass and an increase in mass-specific aerobic capacity in muscles that typically have a high proportion of type IIb fibres. Moreover, the several statistically significant interactions between muscle phenotype and line indicate that the effect of the underlying allele is altered by genetic background.


Asunto(s)
Actividad Motora/fisiología , Músculos/anatomía & histología , Músculos/metabolismo , Músculos/ultraestructura , Miosinas/metabolismo , Alelos , Animales , Peso Corporal , Cruzamiento , Femenino , Masculino , Ratones , Microscopía Electrónica , Microscopía de Polarización , Músculo Esquelético/ultraestructura , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Tamaño de los Órganos , Especificidad de Órganos , Isoformas de Proteínas/metabolismo , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA